
PREFACE

This book is for experienced developers whowant to improve the productivity of their

software development teams. Productivity is not just about speed, but also about the

quality of the systems produced, both intrinsically and as perceived by the peoplewho

have to use them. Our focus is on the power and tools we can put in the hands of our

software developers, and how tomake the best use of the experience and skills already

present in our teams.

We are not talking here about squeezing another 20% out of our existing devel-

opers, programming languages, or development environments. Our industry is long

overdue for a major increase in productivity: the last such advance was over 30 years

ago, when the move from assemblers to compilers raised productivity by around

500%. Our experiences, and those of our customers, colleagues, and competitors,

have shown that a similar or even larger increase is now possible, throughwhatwe call

Domain-Specific Modeling. Indeed, the early adopters of DSM have been enjoying

productivity increases of 500–1000% in production for over 10 years now.

WHAT IS DOMAIN-SPECIFIC MODELING?

Domain-Specific Modeling requires an experienced developer to create three things,

which together form the development environment for other developers in that

domain. A domain here is generally a highly focused problem domain, typically

worked on by 5–500 developers in the same organization. The three things are as

follows:

� A domain-specific modeling language
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� A domain-specific code generator

� A domain framework

With these three parts of a DSM solution in place, the developers need only create

models in the DSM language, and the applications are automatically generated as

code running on top of the domain framework. The generated code need not be edited

or even looked at, thus completing the analogy with the move from assemblers to

compilers: with eachmajor leap of our industry, developers need no longer look at the

previous generation’s source format.

The changes wrought by Domain-Specific Modeling may seem radical, but at

its heart are three simple practices that any experienced software engineer will

recognize:

� Don’t repeat yourself

� Automate after three occurrences

� Customized solutions fit better than generic ones

Other books have discussed these principles, the basic ideas of modeling, and how

tomovemodeling to bemore central to the development process. In this book, wewill

explain what Domain-SpecificModeling is, why it works, and how to create and use a

DSM solution to improve the productivity of your software development.

BACKGROUND OF THE AUTHORS

Both authors have been working in DSM for over 15 years at the time of publication.

In that time we have seen DSM successfully applied in a vast array of different

problem domains, to create applications in a similarly broad collection of program-

ming languages and platforms. Across the board, DSM has consistently increased

productivity by a factor of 5–10. We take no personal credit for those results: the

approach itself simply works.

Similar results have been achieved by our customers creating DSM solutions on

their own, and by people using different tools. However, there have also been plenty of

failures in those two situations: the approach and its tooling are not so self-evident

that anybody can create them anew in vacuo. We too have made plenty of mistakes

along the way and have learned from and with our customers. In particular, by

teaching our customers and others, we have been forced to put our experience into

words and try various ways of modularizing and presenting it. By writing this book,

we hope to be able to pass on our experience in an easily digested form, to help you to

have a smoother path to success.

An important part of smoothing the way to success in creating your own DSM

solution is good tooling. It is possible to create your own modeling tool from

scratch using graphics frameworks and so on, but for all but the largest groups of

developers such an approach will be prohibitively expensive and time consuming.

There are currently several DSM tools available that will allow you to simply
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specify your modeling language, and which offer in return a modeling tool for that

language.

The authors have played a central role in the development of one such DSM tool,

MetaEdit+. The earlier MetaEdit was created as a research prototype in 1991, and

released commercially in 1993, being the first tool to allow people to define their

modeling languages graphically. As is common with such first versions, the original

architecture was found to be too limiting for large-scale commercial use, lacking

support for multiple simultaneous modelers, multiple modeling languages, and

multiple integrated models. These and other requirements were met in MetaEdit+,

released commercially in 1995. MetaEdit+ was created from a clean slate, but

building on the experience gained with MetaEdit: a prime case of ‘‘build one to

throw away.’’

This book, however, like DSM itself, is not limited to or focused on any particular

tool. As far as possible, we have steered clear of tool-specific details. The principles

presented here can be applied in any mature tool, and the benefits of DSM can be

obtained—albeit at a higher cost—even with immature tools. That at least was our

experience and that of our customers with the first version of MetaEdit+, which

was definitely in that category in terms of its user interface!

HOW TO READ THIS BOOK

The book is divided into four main parts.

� Part I explains what DSM is (Chapter 1) and what value it has to offer (Chapter 2).

� Part II defines DSM, both with respect to current practices (Chapter 3) and in terms

of its constituent parts (Chapter 4).

� Part III presents five in-depth examples of DSM in increasingly complex domains

(Chapters 5–9).

� Part IV teaches how to create the various parts of a DSM solution (Chapters

10–12), discusses the processes and tools for creating and using the DSM

solution (Chapters 13–15), and wraps up with a summary and conclusions in

Chapter 16.

In Parts I and II after Chapter 1, readers will findmaterial directed toward those of a

more technical, business minded, or academic bent, and should feel free to skip

sections, returning to them later if necessary. The examples in Part III build on each

other and are also often used in explaining the principles in Part IV, so readers would

be advised to at least skim all the examples. In Part IV, the various parts of a DSM

solutionmay all be the responsibility of one person, or then theymay be split between

two or more people. Chapters 11 and 12, and to a slightly lesser extent Chapters 14

and 15, will make most sense to experienced programmers. Chapters 10 and 13 may

interest those in more of an architect or project management role.

The book web site at http://dsmbook.com contains updates, the modeling lan-

guages from Part III, and a free MetaEdit+ demo.
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